Di Giacomo, Emilio; Gąsieniec, Leszek; Liotta, Giuseppe; Navarra, Alfredo
On the curve complexity of 3-colored point-set embeddings. (English) Zbl 1467.68138

Summary: We establish new results on the curve complexity of k-colored point-set embeddings when $k = 3$. We show that there exist 3-colored caterpillars with only three independent edges whose 3-colored point-set embeddings may require $\Omega(n^{3/4})$ bends on $\Omega(n^{2/3})$ edges. This settles an open problem by M. Badent et al. [Theor. Comput. Sci. 408, No. 2–3, 129–142 (2008; Zbl 1157.68051)] about the curve complexity of point set embeddings of k-colored trees and it extends a lower bound by J. Pach and R. Wenger [Graphs Comb. 17, No. 4, 717–728 (2001; Zbl 0991.05036)] to the case that the graph only has $O(1)$ independent edges. Concerning upper bounds, we prove that any 3-colored path admits a 3-colored point-set embedding with curve complexity at most 4. In addition, we introduce a variant of the k-colored simultaneous embeddability problem and study its relationship with the k-colored point-set embeddability problem.

MSC:
68R10 Graph theory (including graph drawing) in computer science
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Keywords: graph drawing; point-set embedding; simultaneous embedding

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.