Alpay, Daniel; Lewkowicz, Izchak

Quantitatively hyper-positive real functions. (English) Zbl 1467.93235

Summary: Hyper-positive real, matrix-valued, rational functions are associated with absolute stability (the Lurie problem). Here, quantitative subsets of hyper-positive functions, related through nested inclusions, are introduced. Structurally, this family of functions turns out to be matrix-convex and closed under inversion.

A state-space characterization of these functions through a corresponding Kalman-Yakubovich-Popov Lemma, is given. Technically, the classical linear matrix inclusions, associated with passive systems, are here substituted by quadratic matrix inclusions.

MSC:
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, L^p, l^p, etc.) in control theory
93B52 Feedback control
93B20 Minimal systems representations

Keywords:
absolute stability; convex invertible cones; electrical circuits; feedback loops; positive real functions; hyper-positive real functions; K-Y-P lemma; matrix-convex set; state-space realization

Full Text: DOI arXiv

References:
[12] Lewkowicz, I., On the Hyper-Lyapunov matrix inclusion, See
[13] Lewkowicz, I., Passive linear discrete-time systems: characterization through structure, See · Zbl 1454.93097

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.