Eleftheriou, Pantelis E.; Hasson, Assaf; Peterzil, Ya'acov

Strongly minimal groups in o-minimal structures. (English) Zbl 1468.14102

B. Zilber’s trichotomy conjecture introduced in [Sibirsk. Mat. Zh. 25, 71–88 (1984; Zbl 0581.03022)] was disproved by E. Hrushovski [J. Amer. Math. Soc. 62, 147–166 (1993; Zbl 0804.03020)]. However, this conjecture is true in various restricted settings. This paper proves Zilber’s trichotomy conjecture for strongly minimal expansion of 2-dimensional groups, definable in o-minimal structures. The main theorem is as follows:

Let \mathcal{M} be an o-minimal expansion of a real closed field, $(G; +)$ be a 2-dimensional group definable in \mathcal{M}, and $\mathcal{D} = (G; +, \ldots)$ be a strongly minimal structure, all of whose atomic relations definable in \mathcal{M}. If \mathcal{D} is not locally modular, then an algebraic closed field K is interpretable in \mathcal{D}, and the group G, with all its induced \mathcal{D}-structure, is definably isomorphic to an algebraic K-group with all its induced K-structure.

It is a generalization of [A. Hasson et al., Proc. London Math. Soc. (3) 97, 117–154 (2008; Zbl 1153.03011)] which treats the case in which G is the algebraic closure $K = R[i]$ and \mathcal{D} is a structure generated by an \mathcal{M}-definable function, and its proof follows the same strategy as the Hasson’s paper; that is, constructing a field configuration and using Hrushovski’s result that a strongly minimal structure admitting a field construction interprets an algebraically closed field.

A \mathcal{D}-definable subset of G^2 whose Morley rank is one is called a plane curve in this paper. The paper establishes the necessary ingredients for the proof of the main theorem in several distinct steps. In each step, resemblances of \mathcal{D}-definable sets to complex algebraic sets are demonstrated including finiteness of the frontiers of plane curves, finiteness of their poles and their intersection theory. The algebraically closed field K is defined as the collection of all Jacobian matrices at zero of local smooth maps from G to G whose graph is contained in a plane curve by identifying them with the matrices in $M_2(R)$.

Reviewer: Fujita Masato (Kure)

MSC:
14P25 Topology of real algebraic varieties
03C64 Model theory of ordered structures; o-minimality
03C45 Classification theory, stability, and related concepts in model theory

Keywords:
o-minimality; strongly minimal groups; Zilber’s conjecture

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.