Summary: In this paper, we provide a complete regularity analysis for the following abstract thermoelastic system with inertial term
\begin{align*}
\rho u_{tt} + l A^\gamma u_{tt} + \sigma A u &= -mA^\alpha \theta, \\
\gamma c \theta_t + m A^\alpha u_t + k A^\beta \theta &= 0,
\end{align*}
where A is a self-adjoint, positive definite operator on a complex Hilbert space H and
\[(\alpha, \beta, \gamma) \in E = \left[0, \frac{\beta + 1}{2}\right] \times [0, 1] \times [0, 1].\]

It is regarded as the second part of [the third author et al., J. Differ. Equations 267, No. 12, 7085–7134 (2019; Zbl 1432.35023)], where the asymptotic stability of this model was investigated. We are able to decompose the region E into three parts where the associated semigroups are analytic, of Gevrey classes of specific order, and non-smoothing, respectively. Moreover, by a detailed spectral analysis, we will show that the orders of Gevrey class are sharp, under proper conditions. We also show that the orders of polynomial stability obtained in [loc. cit.] are optimal.

MSC:

- 35B65 Smoothness and regularity of solutions to PDEs
- 35B40 Asymptotic behavior of solutions to PDEs
- 35K90 Abstract parabolic equations
- 35L90 Abstract hyperbolic equations
- 47D03 Groups and semigroups of linear operators
- 47D06 One-parameter semigroups and linear evolution equations
- 74F05 Thermal effects in solid mechanics
- 93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, L^p, L^q, etc.) in control theory

Keywords:

- parabolic-hyperbolic systems
- analytic semigroup
- Gevrey class semigroup
- polynomial stability

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.