Koiso, Miyuki

Uniqueness problem for closed non-smooth hypersurfaces with constant anisotropic mean curvature. (English) [Zbl 1468.49048]

Summary: We study a variational problem for piecewise-smooth hypersurfaces in the $(n+1)$-dimensional Euclidean space. An anisotropic energy is the integral of an energy density that depends on the normal at each point over the considered hypersurface, which is a generalization of the area of surfaces. The minimizer of such an energy among all closed hypersurfaces enclosing the same $(n+1)$-dimensional volume is unique and it is (up to rescaling) so-called the Wulff shape. The Wulff shape and equilibrium hypersurfaces of this energy for volume-preserving variations are not smooth in general. In this article we give recent results on the uniqueness and non-uniqueness for closed equilibria. We also give nontrivial self-similar shrinking solutions of anisotropic mean curvature flow. This article is an announcement of forthcoming papers [Y. Jikumaru and the author, “Non-uniqueness of closed embedded non-smooth hypersurfaces with constant anisotropic mean curvature”, Preprint, arXiv:1903.03958; the author, “Uniqueness of stable closed non-smooth hypersurface with constant anisotropic mean curvature”, Preprint, arXiv:1903.03951].

For the entire collection see [Zbl 1462.35005].

MSC:

49Q10 Optimization of shapes other than minimal surfaces
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53E10 Flows related to mean curvature
53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov)

Keywords:
anisotropic mean curvature; anisotropic mean curvature flow; anisotropic surface energy; crystalline variational problem; Wulff shape

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.