Arhangel’skii, A. V.
On nowhere locally compact spaces with connected Stone-Čech remainder. (English)

This paper provides sufficient conditions for when a Tychonoff, nowhere locally compact space X has the property that the remainder, $\beta X \setminus X$, is connected. A space X is Moscow if every regular closed subset is the union of G_δ sets. The products of first countable Tychonoff spaces, countable pseudocompact spaces, and extremally disconnected spaces, are each Moscow. Theorem: If X is Tychonoff, connected, Moscow, and every compact G_δ subspace is empty, then $\beta X \setminus X$ is connected.

A topological group G is C^*-incomplete if there is a topological group G^* such that G is a dense, proper subgroup of G^* and G^* is a subspace of βG. Theorem: If G is a connected topological group that is C^*-incomplete, then $\beta G \setminus G$ is connected. The paper concludes with interesting results about when the remainder of the Wallman compactification of a T_1 space X is disconnected.

Reviewer: Jack R. Porter (Lawrence)

MSC:
54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets)
54B05 Subspaces in general topology

Keywords:
connected space; remainder; Stone-Čech remainder; compactification; Wallman remainder; nowhere locally compact; Moscow space; topological group; Rajkov completion

Full Text: Link

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.