Mastrostefano, Daniele

Summary: For every positive integer N and every $\alpha \in [0,1)$, let $B(N, \alpha)$ denote the probabilistic model in which a random set $A \subset \{1, \ldots, N\}$ is constructed by choosing independently every element of $\{1, \ldots, N\}$ with probability α. We prove that, as $N \to +\infty$, for every A in $B(N, \alpha)$ we have $|AA| \sim |A|^2/2$ with probability $1 - o(1)$, if and only if

$$\frac{\log(\alpha^2 \log N \log 4 - 1)}{\sqrt{\log \log N}} \to -\infty.$$

This improves on a theorem of Cilleruelo, Ramana and Ramaré [J. Cilleruelo et al., Proc. Steklov Inst. Math. 296, 52–64 (2017; Zbl 1371.11023); translation in Tr. Mat. Inst. Steklova 296, 58–71 (2017)], who proved the above asymptotic between $|AA|$ and $|A|^2/2$ when $\alpha = o(1/\sqrt{\log N})$, and supplies a complete characterization of maximal product sets of random sets.

MSC:
11B30 Arithmetic combinatorics; higher degree uniformity

Keywords:
product sets; random models; localised divisor functions; distribution of the number of prime factors

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.