Membrillo-Solis, Ingrid; Theriault, Stephen

For coprime integers p and q, the lens space $L(p,q)$ is the quotient of S^3 by the $\mathbb{Z}/p\mathbb{Z}$-action $(z_0, z_1) \mapsto (e^{2\pi i/p} z_0, e^{2\pi q/p} z_1)$. It admits a CW-structure $P^2(p) \cup e^3$ where $P^2(p)$ is the mapping cone of the degree map $p: S^1 \to S^1$.

Let P be a principal $U(n)$-bundle over $L(p,q)$ where p is a prime. The isomorphism class of P is determined by its first Chern class $k \in H^2(L(p,q); \mathbb{Z})$ which is $\mathbb{Z}/p\mathbb{Z}$. The gauge group of P, denoted by $G_k(L(p,q))$, is the topological group consisting of $U(n)$-equivariant automorphisms of P that fix $L(p,q)$. It is known that gauge groups of $U(n)$-bundles over $L(p,q)$ have finitely many distinct homotopy types. Classifying the homotopy types of various $G_k(L(p,q))$ is important to understand the topology of these gauge groups.

In Section 2 the authors study the homotopy theory of $L(p,q)$ and show that the inclusion $P^2(p) \to L(p,q)$ induces an isomorphism between $[L(p,q), BU(n)]$ and $[P^2(p), BU(n)]$ which are $\mathbb{Z}/p\mathbb{Z}$.

Denote by $G_k(P^2(p))$ the gauge group of the principal $U(n)$-bundle over $P^2(p)$ with first Chern class $k \in H^2(P^2(p); \mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$. In Section 3 the authors classify the homotopy types of various $G_k(P^2(p))$ and show that $G_k(P^2(p)) \simeq G(2)P(p)$ if and only if $gcd(p,k) = gcd(p,\ell)$.

Combining their work in Sections 2 and 3, in Section 4 the authors prove that $gcd(p,k) = gcd(p,\ell)$ if $G_k(L(p,q)) \simeq G_k(L(p,q))$. Moreover, they show the converse whenever there exists an integer u such that $k \equiv ul \pmod{p}$ and $u^2 \equiv \pm 1 \pmod{p}$. In particular, for $p \in \{3, 5\}$, $G_k(L(p,q)) \simeq G(2)(L(p,q))$ if and only if $gcd(p,k) = gcd(p,\ell)$.

Reviewer: Tseleung So (Regina)

MSC:

55P15 Classification of homotopy type
54C35 Function spaces in general topology
81T13 Yang-Mills and other gauge theories in quantum field theory

Keywords:

lens space; gauge group; homotopy type

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH
paper as accurately as possible without claiming the completeness or perfect precision of the matching.