Li, Wenjie; Yuan, Jinjiang

Summary: This paper introduces a new environment of online scheduling in which jobs are scheduled under the non-delayed processing (NDP) constraint, where NDP means that the available jobs cannot be delayed for processing when some machine is idle. We study in this paper the single-machine online scheduling to minimize the maximum weighted completion time (WC_{max}) or the maximum delivery completion time (L_{max}) under the NDP constraint. For the first problem, we establish a lower bound 2 and provide an online algorithm which has a competitive ratio of $(3 + \sqrt{5})/2 \approx 2.618$. We present a 3/2-competitive best possible online algorithm for the second problem.

MSC: 90B35 Deterministic scheduling theory in operations research

Keywords: online scheduling; weighted completion time; delivery time; non-delayed processing

Full Text: DOI

References:

[3] Chai, X.; Lu, LF; Li, WH; Zhang, LQ, Best-possible online algorithms for single machine scheduling to minimize the maximum weighted completion time, Asia Pac J Oper Res, 35, 1850048 (2018) · Zbl 1407.90144 · 10.1142/S0217595918500483

[5] Fang, Y.; Liu, PH; Lu, XW, Optimal on-line algorithms for one batch machine with grouped processing times, J Comb Optim, 22, 509-516 (2011) · Zbl 1236.90052 · 10.1007/s10878-010-9298-6

[9] Li, WH; Chai, X., Online scheduling on bounded batch machines to minimize the maximum weighted completion time, J Oper Res Soc China, 6, 455-465 (2018) · Zbl 1413.90095 · 10.1007/s40305-017-0179-x

[22] Yuan, JJ; Ng, CT; Cheng, TCE, Scheduling with release dates and preemption to minimize multiple max-form objective functions, Eur J Oper Res, 280, 860-875 (2020) · Zbl 1430.90296 · doi:10.1016/j.ejor.2019.07.072

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.