In this paper a conjecture of Fox, Huang, and Lee is proved that characterizes directed graphs having constant density in all tournaments. A digraph \overrightarrow{H} is said to be impartial if it has the following property. For some n at least the order of \overrightarrow{H}, all n-vertex tournaments contain the same number of copies of \overrightarrow{H} as subgraphs. A digraph \overrightarrow{T} is said to be recursively bridge-mirrored if it can be constructed recursively in the following manner from a single vertex. Mark an arbitrary vertex of \overrightarrow{T} as its root, and create a new graph by taking two identical copies of this rooted \overrightarrow{T} and adding a new directed edge from one root to the other. The main theorem established is the following equivalence. A directed graph is impartial if and only if it is a disjoint union of recursively bridge-mirrored digraphs.

Reviewer: Ko-Wei Lih (Taipei)

MSC:
05C20 Directed graphs (digraphs), tournaments

Keywords:
Fox, Huang, and Lee conjecture; directed graphs; tournaments

Full Text: DOI arXiv

References: