Blekherman, Grigoriy; Raymond, Annie; Singh, Mohit; Thomas, Rekha R.

Simple graph density inequalities with no sum of squares proofs. (English) [Zbl 1474.05210]

Combinatorica 40, No. 4, 455-471 (2020).

Let \(H \) and \(G \) be graphs without loops and multiple edges. Then a mapping \(f : V(H) \to V(G) \) is called a graph homomorphism if the map induced by \(f \) assigns to each edge of \(H \) an edge of \(G \). The probability of a random mapping from \(V(H) \) to \(V(G) \) to be a graph homomorphism, denoted by \(t(H; G) \), is called the homomorphism density of a graph \(H \) in a graph \(G \). An expression containing homomorphism densities is non-negative if it holds for all graphs \(G \). A standard method to prove the non-negativity of a density expression is to write it as a sum of squares. The main result of this paper provides a simple sufficient condition for a density expression not to be representable as a sum of squares. Using this result, the authors show that the non-negativity of some non-negative density expressions cannot be proved by the sum of squares method. These results answer in the affirmative two questions raised by Lovász.

Reviewer: Peter Horák (Tacoma)

MSC:

05C35 Extremal problems in graph theory
90C22 Semidefinite programming
90C35 Programming involving graphs or networks

Keywords:

homomorphism density; sum of squares

Full Text: DOI arXiv

References:

[12] Li, J. L. X.; Szegedy, B., On the logarithmic calculus and Sidorenko’s conjecture (2011)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.