Friedman, Limor; Krivelevich, Michael
Cycle lengths in expanding graphs. (English) [Zbl 1474.05220]

For a positive constant α a graph G on n vertices is called an α-expander if every vertex set U of size at most $n/2$ has an external neighborhood whose size is at least $\alpha|U|$. It is proved that cycle lengths in α-expanders are well distributed. In particular, it is shown that for every $0 < \alpha \leq 1$ there exist positive constants n_0, C and $A = O(1/\alpha)$ such that for every α-expander G on $n \geq n_0$ vertices and every integer $\ell \in [C\log n, \frac{n}{\alpha}]$, G contains a cycle whose length is between ℓ and $\ell + A$; the order of dependence of the additive error term A on α is optimal. Secondly, it is shown that every α-expander on n vertices contains $\Omega\left(\frac{n^3}{\log(1/\alpha)}\right)$ different cycle lengths. Finally, it is introduced another expansion-type property, guaranteeing the existence of a linearly long interval in the set of cycle lengths. Namely, for $\beta > 0$ a graph G on n vertices is called β-graph if every pair of disjoint sets of size at least βn are connected by an edge. It is proved that for every $\beta < 1/20$ there exist positive constants $b_1 = O\left(\frac{1}{\log(1/\beta)}\right)$ and $b_2 = O(\beta)$ such that every β-graph on n vertices contains a cycle of length ℓ for every integer $\ell \in [b_1 \log n, (1 - b_2)n]$; the order of dependence of b_1 and b_2 on β is optimal.

Reviewer: Mirko Lepović (Kragujevac)

MSC:
05C38 Paths and cycles
05C48 Expander graphs
05C35 Extremal problems in graph theory

Keywords:
α-expander; external neighborhood; cycle lengths

Full Text: DOI arXiv

References:
[8] Erdős, P., Some recent problems and results in graph theory, combinatorics and number theory (1976) · Zbl 0352.05024

Krivelevich, M., Long paths and Hamiltonicity in random graphs, 4-27 (2016) · Zbl 1408.05075

Krivelevich, M., Expanders - how to find them, and what to find in them, 456, 115-142 (2019) · Zbl 1476.05104

Thomassen, C., Graph decomposition with applications to subdivisions and path systems modulo k, Journal of Graph Theory, 7, 261-271 (1983) · Zbl 0515.05052 · doi:10.1002/jgt.3190070215

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.