Shukla, H. S.; Mishra, Neelam; Shukla, Vivek

On hypersurface of the Finsler space obtained by conformal β-change. (English)

Zbl 1474.53118

Jñānābha 50, No. 1, 49-56 (2020).

Summary: The conformal β-change of Finsler metric $L(x, y)$ is given by $L^*(x, y) = e^{\sigma(x)} f(L(x, y), \beta(x, y))$, where $\sigma(x)$ is a function of x, $\beta(x, y) = b_i(x)y^i$ is a one-form on the underlying manifold M^n, and $f(L(x, y), \beta(x, y))$ is a homogeneous function of degree one in L and β. Let F^n and F^*n be Finsler spaces with metric functions L and L^* respectively. In this paper we study the hypersurface of F^*n and find condition under which this hypersurface becomes a hyperplane of first kind, a hyperplane of second kind and a hyperplane of third kind. In this endeavour we connect quantities of F^*n with those of F^n. When the hypersurface of F^*n is a hyperplane of first kind, we investigate the conditions under which it becomes a Landsberg space, a Berwald space, or a locally Minkowskian space.

MSC:

53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)

Keywords:
Finsler space; hypersurface; Cartan-parallel; hyperplane; conformal β-change; homothetic β-change

Full Text: Link