Scheucher, Manfred
Two disjoint 5-holes in point sets. (English) Zbl 1474.68428

Summary: Given a set of points $S \subseteq \mathbb{R}^2$, a subset $X \subseteq S$ with $|X| = k$ is called k-gon if all points of X lie on the boundary of the convex hull of X, and k-hole if, in addition, no point of $S \setminus X$ lies in the convex hull of X. We use computer assistance to show that every set of 17 points in general position admits two disjoint 5-holes, that is, holes with disjoint respective convex hulls. This answers a question of K. Hosono and M. Urabe [Comput. Geom. 20, No. 3, 97–104 (2001; Zbl 0990.68171)]. We also provide new bounds for three and more pairwise disjoint holes.

In a recent article, K. Hosono and M. Urabe [AKCE Int. J. Graphs Comb. 17, No. 1, 7–15 (2020; Zbl 1475.52027)] present new results on interior-disjoint holes – a variant, which also has been investigated in the last two decades. Using our program, we show that every set of 15 points contains two interior-disjoint 5-holes.

Moreover, our program can be used to verify that every set of 17 points contains a 6-gon within significantly smaller computation time than the original program by G. Szekeres and L. Peters [ANZIAM J. 48, No. 2, 151–164 (2006; Zbl 1152.52008)]. Another independent verification of this result was done by F. Marić [J. Autom. Reasoning 62, No. 3, 301–329 (2019; Zbl 1468.68302)].

MSC:
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
52B55 Computational aspects related to convexity
52C10 Erdős problems and related topics of discrete geometry
68V05 Computer assisted proofs of proofs-by-exhaustion type

Keywords:
Boolean satisfiability (SAT); empty convex polygon; Erdős-Szekeres-type problem

Software:
PicoSAT; DRAT-trim

Full Text: DOI arXiv

References:
[4] Aichholzer, O., Enumerating order types for small point sets with applications · Zbl 1027.68127

Biniaz, A.; Maheshwari, A.; Smid, M. H.M., Compatible 4-holes in point sets (2017)

Erdős, P.; Szekeres, G., A combinatorial problem in geometry, Compos. Math., 2, 463-470 (1935) · Zbl 0525.68038

Felsner, S.; Goodman, J. E., Pseudoline arrangements, (Toth, O'Rourke; Goodman, Handbook of Discrete and Computational Geometry (2018), CRC Press) · Zbl 0914.51007

Krasner, H., Order Types of Point Sets in the Plane (2003), Institute for Theoretical Computer Science, Graz University of Technology: Institute for Theoretical Computer Science, Graz University of Technology Austria, PhD thesis

Matoušek, J., Convex independent subsets, (Lectures on Discrete Geometry (2002), Springer), 29-39

O’Rourke, J., Computational Geometry in C (1994), Cambridge University Press · Zbl 0816.68124

Page 2

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2023 FIZ Karlsruhe GmbH

Sakai, T.; Urrutia, J., Covering the convex quadrilaterals of point sets, Graphs Comb., 23, 1, 343-357 (2007) · Zbl 1118.52021

U. Wagner, E. Welzl, Connectivity of triangulation flip graphs in the plane, Unpublished manuscript.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.