Summary: Let \(\pi : \mathbb{R}^n \to \mathbb{R}^d \) be any linear projection, let \(A \) be the image of the standard basis. Motivated by Postnikov’s study of positive Grassmannians via plabic graphs and Galashin’s connection of plabic graphs to slices of zonotopal tilings of 3-dimensional cyclic zonotopes, we study the poset of subdivisions induced by the restriction of \(\pi \) to the \(k \)-th hypersimplex, for \(k = 1, \ldots, n-1 \). We show that: For arbitrary \(A \) and for \(k \leq d + 1 \), the corresponding fiber polytope \(\mathcal{F}(k)(A) \) is normally isomorphic to the Minkowski sum of the secondary polytopes of all subsets of \(A \) of size \(\max\{d+2, n-k+1\} \). When \(A = P_n \) is the vertex set of an \(n \)-gon, we answer the Baues question in the positive: the inclusion of the poset of \(\pi \)-coherent subdivisions into the poset of all \(\pi \)-induced subdivisions is a homotopy equivalence. When \(A = C(d, n) \) is the vertex set of a cyclic \(d \)-polytope with \(d \) odd and any \(n \geq d + 3 \), there are non-lifting (and even more so, non-separated) \(\pi \)-induced subdivisions for \(k = 2 \).

MSC:

- 52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
- 52B45 Dissections and valuations (Hilbert’s third problem, etc.)
- 52C22 Tilings in \(n \) dimensions (aspects of discrete geometry)
- 52C40 Oriented matroids in discrete geometry
- 51M20 Polyhedra and polytopes; regular figures, division of spaces
- 05C10 Planar graphs; geometric and topological aspects of graph theory
- 05C15 Coloring of graphs and hypergraphs

Keywords:

hypersimplex; subdivisions; fiber polytope; Baues problem; separated sets; Zitat Galashin: 1406.52039; plabic graphs; plabic=planar bicolored

Full Text: DOI

References:
