Summary: We study solutions of the Thermodynamic Bethe Ansatz equations for relativistic theories defined by the factorizable S-matrix of an integrable QFT deformed by CDD factors. Such S-matrices appear under generalized TTbar deformations of integrable QFT by special irrelevant operators. The TBA equations, of course, determine the ground state energy $E(R)$ of the finite-size system, with the spatial coordinate compactified on a circle of circumference R. We limit attention to theories involving just one kind of stable particles, and consider deformations of the trivial (free fermion or boson) S-matrix by CDD factors with two elementary poles and regular high energy asymptotics — the “2CDD model”. We find that for all values of the parameters (positions of the CDD poles) the TBA equations exhibit two real solutions at R greater than a certain parameter-dependent value R_\ast, which we refer to as the primary and secondary branches. The primary branch is identified with the standard iterative solution, while the secondary one is unstable against iterations and needs to be accessed through an alternative numerical method known as pseudo-arc-length continuation. The two branches merge at the “turning point” R_\ast (a square-root branching point). The singularity signals a Hagedorn behavior of the density of high energy states of the deformed theories, a feature incompatible with the Wilsonian notion of a local QFT originating from a UV fixed point, but typical for string theories. This behavior of $E(R)$ is qualitatively the same as the one for standard TTbar deformations of local QFT.

MSC:

81U20 S-matrix theory, etc. in quantum theory
81R12 Groups and algebras in quantum theory and relations with integrable systems
81T17 Renormalization group methods applied to problems in quantum field theory
81T28 Thermal quantum field theory

Keywords:

integrable field theories; renormalization group

Full Text: DOI arXiv

References:

[8] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with $T \overline{T}$, JHEP04 (2018) 010 [arXiv:1611.03470] [INSPIRE]. · Zbl 1390.81529

[10] R. Conti, S. Negro and R. Tateo, Conserved currents and $T \overline{T} \overline{S}$ irrelevant deformations of 2D integrable field

29. P. Fendley and H. Saleur, Massless integrable quantum field theories and massless scattering in (1 + 1)-dimensions, in Summer School in High-energy Physics and Cosmology (Includes Workshop on Strings, Gravity, and Related Topics, Trieste Italy (1993), pg. 301 [hep-th/9310058] [INSPIRE]. · Zbl 0844.58107

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.