Summary: The major purpose of this paper is to use the fractional integral operator in terms of extended generalized Bessel function to estimate new fractional integral inequalities for the extended Chebyshev functional in the sense of synchronous functions. We prove a set of inequalities for the fractional integral operator in terms of extended generalized Bessel function integrals with one and two parameters. Also, we discussed some special cases of the obtained result.

MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals

Full Text: DOI

References:

[19] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat

[25] Kashuri, A.; Liko, R., Some k-fractional integral inequalities of Hermite-Hadamard type concerning twice differentiable generalized relative semi-\((r; m, h_1, h_2) \)-preinvex mappings, Communications in Optimization Theory, 2018 (2018)

[26] Luo, C.; Du, T.; Awan, M. U.; Mihai, M. V., On the k-fractional integral inequalities through the generalized \((s; \left(\alpha, m, \right)) \)-preinvexity, Journal of Nonlinear Functional Analysis, 2019 (2019)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.