Reducing graph transversals via edge contractions. (English) [Zbl 1477.68239]

Summary: For a graph invariant \(\pi \), the CONTRACTION(\(\pi \)) problem consists of, given a graph \(G \) and positive integers \(k, d \), deciding whether one can contract \(k \) edges of \(G \) to obtain a graph in which \(\pi \) has dropped by at least \(d \). E. Galby et al. [Discrete Math. 344, No. 1, Article ID 112169, 26 p. (2021; Zbl 1455.05055); Theor. Comput. Sci. 877, 18–35 (2021; Zbl 1478.68239)] studied the case where \(\pi \) is the size of a minimum dominating set. We focus on graph invariants defined as the minimum size of a vertex set that hits all the occurrences of graphs in a collection \(H \) according to a fixed containment relation. We prove co-NP-hardness results under some assumptions on the graphs in \(H \), in particular implying that CONTRACTION(\(\pi \)) is co-NP-hard for fixed \(k = d = 1 \) when \(\pi \) is the size of a minimum feedback vertex set or an odd cycle transversal. In sharp contrast, when \(\pi \) is the size of a minimum vertex cover, the problem is in XP parameterized by \(d \).

MSC:
68R10 Graph theory (including graph drawing) in computer science
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68Q27 Parameterized complexity, tractability and kernelization

Keywords:
blocker problem; edge contraction; graph transversal; parameterized complexity; vertex cover; feedback vertex set; odd cycle transversal

References:
[2] Bazgan, Cristina; Bentz, Cédric; Picouleau, Christophe; Ries, Bernard, Blockers for the stability number and the chromatic number, Graphs Combin., 31, 1, 73-90 (2015) · Zbl 1306.05051
[3] Bazgan, Cristina; Toubaline, Sonia; Tuza, Zsolt, The most vital nodes with respect to independent set and vertex cover, Discrete Appl. Math., 159, 1933 (2011) · Zbl 1223.05240
[4] Bentz, Cédric; Marie-Christine, Costa; de Werra, Dominique; Picouleau, Christophe; Ries, Bernard, Blockers and transversals in some subclasses of bipartite graphs: when caterpillars are dancing on a grid, Discrete Math., 310, 132 (2010) · Zbl 1351.05123
[9] Crespelle, Christophe; Grenais, Oudin; Fomin, Fedor V.; Golovach, Petr A., A survey of parameterized algorithms and the complexity of edge modification (2020)
[10] Cygan, Marek; Fomin, Fedor V.; Kowalik, Lukasz; Lokshtanov, Daniel; Marx, Dániel; Pilipczuk, Marcin; Pilipczuk, Michal; Saurabh, Saket, Parameterized Algorithms (2015), Springer · Zbl 1334.90001
[18] Escoffier, Bruno; Gourvès, Laurent; Monnot, Jérôme, Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs, J. Discret. Algorithms, 8, 1, 36-49 (2010) - Zbl 1214.05162
[19] Fomin, Fedor V.; Lokshtanov, Daniel; Mihajlin, Ivan; Saurabh, Saket; Zehavi, Meirav, Computation of Hadwiger number and related contraction problems: tight lower bounds (2020)
[22] Galby, Esther; Mann, Felix; Ries, Bernard, Blocking total dominating sets via edge contractions (2020)
[23] Galby, Esther; Mann, Felix; Ries, Bernard, Reducing the domination number of \((P_3 + k P_2)\)-free graphs via one edge contraction (2020)
[27] Heggernes, Pinar; van ’t Hof, Pim; Lévêque, Benjamin; Lokshtanov, Daniel; Paul, Christophe, Contracting graphs to paths and trees, Algorithmica, 68, 1, 109-132 (2014) - Zbl 1310.68229
[28] Heggernes, Pinar; van ’t Hof, Pim; Lokshtanov, Daniel; Paul, Christophe, Obtaining a bipartite graph by contracting few edges, SIAM J. Discrete Math., 27, 4, 2143-2156 (2013) - Zbl 1285.05167
[31] Kim, Eun Jung; Milanic, Martin; Monnot, Jérôme; Picouleau, Christophe, Complexity and algorithms for constant diameter augmentation problems (2020)
[34] Mahdavi Pajouh, Foad; Boginski, Vladimir; Pasiliao, Eduardo, Minimum vertex blocker clique problem, Networks, 64, 48 (2014) - Zbl 1390.90185
[36] Rautenbach, Dieter; Sereni, Jean-Sébastien, Transversals of longest paths and cycles, SIAM J. Discrete Math., 28, 1, 335-341 (2014) - Zbl 1293.05183
[37] Robertson, Neil; Seymour, Paul D., Graph minors. V. Excluding a planar graph, J. Comb. Theory, Ser. B, 41, 1, 92-114 (1986) - Zbl 0598.05055
[38] Watanabe, Toshimasa; Ae, Tadashi; Nakamura, Akira, On the NP-hardness of edge-deletion and -contraction problems, Discrete Appl. Math., 6, 1, 63-78 (1983) - Zbl 0511.68028