Summary: A bipartite graph is called bipancyclic if it contains cycles of every even length from four up to the number of vertices in the graph. A theorem of E. Schmeichel and J. Mitchem [J. Graph Theory 6, 429–439 (1982; Zbl 0502.05036)] states that for $n \geq 4$, every balanced bipartite graph on $2n$ vertices in which each vertex in one color class has degree greater than $\frac{n}{2}$ and each vertex in the other color class has degree at least $\frac{n}{2}$ is bipancyclic. We prove a generalization of this theorem in the setting of graph transversals. Namely, we show that given a family \mathcal{G} of $2n$ bipartite graphs on a common set X of $2n$ vertices with a common balanced bipartition, if each graph of \mathcal{G} has minimum degree greater than $\frac{n}{2}$ in one color class and minimum degree at least $\frac{n}{2}$ in the other color class, then there exists a cycle on X of each even length $4 \leq \ell \leq 2n$ that uses at most one edge from each graph of \mathcal{G}. We also show that given a family \mathcal{G} of n bipartite graphs on a common set X of $2n$ vertices meeting the same degree conditions, there exists a perfect matching on X that uses exactly one edge from each graph of \mathcal{G}.

MSC:
05C45 Eulerian and Hamiltonian graphs
05C38 Paths and cycles
05C75 Structural characterization of families of graphs
05C12 Distance in graphs
05C07 Vertex degrees

Keywords:
vertex degrees; balanced bipartite graph

Full Text: DOI arXiv

References:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.