Mohammadi, Amir; Margulis, Gregorii

Arithmeticity of hyperbolic 3-manifolds containing infinitely many totally geodesic surfaces.
(English) Zbl 1483.57017

The main result in this paper is that if a closed hyperbolic 3-manifold M contains infinitely many totally geodesic surfaces, then M is arithmetic. The result answers affirmatively an open question asked by Reid and by McMullen, cf. [D. B. McReynolds and A. W. Reid, Math. Res. Lett. 21, No. 1, 169–185 (2014; Zbl 1301.53039) and K. Delp et al., “Problems In Groups, Geometry, and Three-Manifolds”, Preprint, arXiv:1512.04620]. The proof of arithmeticity uses a superrigidity theorem. As a consequence, the authors obtain that if $M = \mathbb{H}^3/\Gamma$ is a closed hyperbolic 3-manifold which contains infinitely many totally geodesic surfaces, the index of Γ in its commensurator group is infinite.

Reviewer: Athanase Papadopoulos (Strasbourg)

MSC:
57K32 Hyperbolic 3-manifolds
37A17 Homogeneous flows
22F30 Homogeneous spaces

Keywords:
hyperbolic 3-manifold; arithmetic group; geodesic plane; superrigidity

Full Text: DOI arXiv

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH

[34] Siegel, C. L.. Discontinuous groups. Ann. of Math. (2) 44 (1943), 674-689. · Zbl 0061.04504

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.