Liverts, Evgeny Z.
Co-spherical electronic configuration of the helium-like atomic systems. (English)
Zbl 1483.81162

Summary: The properties of a special configuration of a helium-like atomic system, when both electrons are on the surface of a sphere of radius \(r \), and angle \(\theta \) characterizes their positions on sphere, are investigated. Unlike the previous studies, \(r \) is considered as a quantum mechanical variable but not a parameter. It is important that the “co-spherical” and the “collinear” configuration are coincident in two points. For \(\theta = 0 \) one obtains the state of the electron-electron coalescence, whereas the angle \(\theta = \pi \) characterizes the e-n-e configuration when the electrons are located at the ends of the diameter of sphere with the nucleus at its center. The Pekeris-like method representing a fully three-body variational technique is used for the expedient calculations. Some interesting features of the expectation values representing the basic characteristics of the “co-spherical” electronic configuration are studied. The unusual properties of the expectation values of the operators associated with the kinetic and potential energy of the two-electron atom/ion possessing the “co-spherical” configuration are found. Refined formulas for calculations of the two-electron Fock expansion by the Green’s function approach are presented. The model wave functions of high accuracy describing the “co-spherical” electronic configuration are obtained. All results are illustrated in tables and figures.

MSC:
81V45 Atomic physics
35P05 General topics in linear spectral theory for PDEs
81V10 Electromagnetic interaction; quantum electrodynamics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
30H20 Bergman spaces and Fock spaces
35J08 Green’s functions for elliptic equations
70M20 Orbital mechanics

Keywords:
two-electron atom/ion; co-spherical configuration; Fock expansion; ground state; wave function

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.