Some sum-product estimates in matrix rings over finite fields. (English)

Zbl 1485.11055

Summary: We study some sum-product problems over matrix rings. Firstly, for $A, B, C \subseteq M_n(\mathbb{F}_q)$, we have
$$|A + BC| \gtrsim q^{n^2},$$
whenever $|A||B||C| \gtrsim q^{3n^2 - \frac{n+1}{2}}$. Secondly, if a set A in $M_n(\mathbb{F}_q)$ satisfies $|A| \geq C(n)q^{n^2-1}$ for some sufficiently large $C(n)$, then we have
$$\max\{|A + A|, |AA|\} \gtrsim \min\left\{\frac{|A|^2}{q^{n^2 - \frac{n+1}{2}}}, q^{n^2/3}|A|^{2/3}\right\}.$$

These improve the results due to The and Vinh (2020), and generalize the results due to Mohammadi, Pham, and Wang (2021). We also give a new proof for a recent result due to The and Vinh (2020). Our method is based on spectral graph theory and linear algebra.

MSC:

11B75 Other combinatorial number theory
11B30 Arithmetic combinatorics; higher degree uniformity
68R05 Combinatorics in computer science

Keywords:
sum-product estimates; spectral graph theory; finite field

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.