Consider a graph and imagine that some chips are initially assigned to its vertices. At each time step, they are redistributed in a way that all vertices simultaneously send one chip to each neighbour with fewer chips. This process model is called diffusion and it was introduced by C. Duffy et al. [Discrete Math. Theor. Comput. Sci. 20, No. 1, Paper No. 4, 18 p. (2018; Zbl 1418.91114)].

If $C = (C_0, C_1, \ldots)$ is a sequence of configurations of diffusion, then the period length of C is the minimum positive integer p such that $C_t = C_{t+p}$ for all $t \geq N$, for some natural number N. In [J. Long and B. Narayanan, J. Comb. 10, No. 2, 235–241 (2019; Zbl 1403.05099)], it is proved that the period length of every configuration sequence is either 1 or 2. In particular, we say that C is a period configuration if it is in the singleton or in the ordered pair of configurations contained within the period of a configuration sequence.

An important role in the main result of the paper is provided by polyominoes. We recall that a polyomino is a finite and non-empty collection of squares having unitary size and joined edge by edge in the plane. An h-strip is a polyomino consisting of a maximal rectangle of height one and an n-omino board-pile is a polyomino of n cells having a finite number of h-strips and just one per row.

In this paper, the authors prove that the number of period configurations on the complete graph K_n is equal to the number of n-omino board-pile polyominoes. As a consequence, they obtain also that the number of period configurations of K_n follows the recurrence relation $a_n = 5a_{n-1} - 7a_{n-2} + 4a_{n-3}$ for $n \geq 5$ with initial values $a_1 = 1$, $a_2 = 2$, $a_3 = 6$, and $a_4 = 19$.

Reviewer: Francesco Navarra (Messina)

MSC:
05B50 Polyominoes

Keywords:
polyominoes

Full Text: Link

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.