Qiu, Xiaoli; Qi, Chunyan; Liu, Xiong; Li, Baode

Estimates for multilinear operators on anisotropic function spaces and their applications.

(Chinese. English summary) [Zbl 1499.42079]

Summary: Let A be an anisotropic dilation on \mathbb{R}^n and L a general multilinear operator formed by anisotropic Calderón-Zygmund operators. We obtain the boundedness of L from weighted Lebesgue spaces to the unweighted anisotropic Hardy space. Moreover, for the anisotropic BMO space $\text{BMO}_A(\mathbb{R}^n)$ and the weighted anisotropic BMO space $\text{BMO}_A^w(\mathbb{R}^n)$, we obtain an inclusion relationship: $\text{BMO}_A^w(\mathbb{R}^n) \subset \text{BMO}_A(\mathbb{R}^n)$. As an application, for the commutator $[T, b]$ of the anisotropic Calderón-Zygmund operator T and b in $\text{BMO}_A^w(\mathbb{R}^n)$, we obtain $||[T, b](f)||_{L^p(\mathbb{R}^n)} \leq C||b||_{\text{BMO}_A^w(\mathbb{R}^n)}||f||_{L^p(\mathbb{R}^n)}$. All these results are still new even in the classical isotropic setting.

MSC:
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B35 Function spaces arising in harmonic analysis

Keywords:
anisotropy; Muckenhoupt weight; Hardy space; multilinear operator; Calderón-Zygmund operator; commutator

Full Text: DOI