A topological space X is called pseudo-\aleph_1-compact if every locally finite family of open sets in X is countable. A topological space X is called fairly pseudo-\aleph_1-compact if every family γ of open sets in X with $|\gamma| = \aleph_1$ has a complete accumulation point.

In section 2 is studied the following problem: Let X be a Lindelöf P-space and Y be a fairly pseudo-\aleph_1-compact space. Is the product $X \times Y$ fairly pseudo-\aleph_1-compact? It is proved that the product of a pseudo-\aleph_1-compact P-group and a fairly pseudo-\aleph_1-compact space is fairly pseudo-\aleph_1-compact.

In section 3 are studied τ-stably and τ-steady topological groups (see also section 5.6 in [A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures, Hackensack, NJ: World Scientific; Paris: Atlantis Press (2008; Zbl 1323.22001)]). The main result is theorem 3.13: A Tychonoff space X is τ-stable if and only if the free topological group $F(X)$ is τ-steady.

Reviewer: Mihail I. Ursul (Oradea)

MSC:

22A05 Structure of general topological groups
54H11 Topological groups (topological aspects)
54A25 Cardinality properties (cardinal functions and inequalities, discrete sub-sets)
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)

Keywords:
Lindelöf; free topological group; R-factorizable; P-space; weakly Lindelöf; τ-stable; τ-steady; pseudo-\aleph_1-compact; Tikhonov space

Full Text: DOI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.