Karpenko, Nikita A.
An ultimate proof of Hoffmann-Totaro’s conjecture. (English) Zbl 1506.11046

Given an anisotropic quadratic form \(\varphi \) over a field \(F \), the restriction \(\varphi_K \) is isotropic where \(K \) is the function field of its underlying quadric. The maximal dimension of a totally isotropic subform, denoted by \(i_1(\varphi) \), was conjectured by Hoffmann (originally in characteristic 2) and Totaro (arbitrary characteristic, see [B. Totaro, J. Algebr. Geom. 17, No. 3, 577–597 (2008; Zbl 1144.11031), p. 596]) to be at most \(2^m \) where \(m \) is the the maximal integer for which \(2^m \mid \dim \varphi - i_1(\varphi) \). The conjecture implies, in particular, that \(i_1(\varphi) \leq \frac{1}{2} \dim \varphi \), something that is well known in the nonsingular case (where \(i_1(\varphi) \) coincides with the first Witt index), and the bound is sharp when \(\varphi \) is a Pfister form.

The conjecture was proven by the author of this current paper to hold true when \(\text{char}(F) \neq 2 \) in [N. A. Karpenko, Invent. Math. 153, No. 2, 455–462 (2003; Zbl 1032.11016)], using Steenrod operations on modulo 2 Chow groups. In the works of Primozic, Haution and Scully, much of the machinery was adapted to the characteristic 2 case, and the conjecture remained open only in the case of singular, but not totally singular, quadratic forms over fields of characteristic 2, a case which the current paper resolves in the positive (as expected).

Reviewer: Adam Chapman (Tel Hai)

MSC:
11E04 Quadratic forms over general fields
11E81 Algebraic theory of quadratic forms; Witt groups and rings
14C25 Algebraic cycles

Keywords:
quadratic forms over fields; Chow groups; Steenrod operations

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.