Frenck, Georg; Reinhold, Jens
Bundles with non-multiplicative \(\hat{A} \)-genus and spaces of metrics with lower curvature bounds.
(English) Zbl 1506.58005

Let \(M \) be a smooth closed \(d \)-dimensional manifold. Then \(\mathcal{R}(M) \) denotes the space of all metrics on \(M \) with the \(C^\infty \)-topology. Let \(\mathcal{R}_{\text{scal}>0}(M) \) denote the subspace of \(\mathcal{R}(M) \) of all metrics with positive scalar curvature. In their paper, the authors spot elements of infinite order of homotopy groups for a large class of manifolds. Let \(\mathcal{F}(M) \subset \mathcal{R}(M) \) be a \(\text{Diff}(M) \)-invariant subset that admits a \(\text{Diff}(M) \)-equivariant continuous map \(\iota_F : \mathcal{F}(M) \to \mathcal{R}_{\text{scal}>0}(M) \) (for example, this includes \(\mathcal{R}_{\text{Ric}>0}(M) \)). Let \(W^d_g = (S^n \times S^n)^\#g \) and \(W^{2n+1}_g = (S^n \times S^{n+1})^\#g \). The authors define the genus of \(M \) as the largest number \(g \) such that there is a manifold \(N \) with \(M \cong N \# W^d_g \).

Authors’ main result (Theorem A) states that if \(M \) is a Spin-manifold of genus at least 1 and \(d \geq 10, d \neq 13 \), and if \(\mathcal{F}(M) \neq \emptyset \), then either \(\pi_1(\mathcal{F}(M)) \) is infinite or \(\pi_j(\mathcal{F}(M)) \otimes \mathbb{Q} \neq 0 \) for some \(2 \leq j \leq 9 \).

For \(d = 6 \mod 8 \), the authors prove a stronger result (Theorem B): either the map \(\iota_F : \mathcal{F}(M) \to \mathcal{R}_{\text{scal}>0}(M) \) collapses infinitely many path components to one or \(H_1(\mathcal{F}(M); \mathbb{Q}) \neq 0 \).

The authors conclude the paper with examples of manifolds \(M \) for which the image of the map on homotopy groups induced by the orbit map \(\text{Diff}(M, D) \to \mathcal{R}_{\text{scal}>0}(M) \) contains elements of infinite order, where \(\text{Diff}(M, D) \) is the topological group of diffeomorphisms of \(M \) fixing an embedded disk \(D \subset M \) of codimension zero.

Reviewer: Igor G. Nikolaev (Urbana)

MSC:

- 58D17 Manifolds of metrics (especially Riemannian)
- 53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
- 55P47 Infinite loop spaces
- 55R35 Classifying spaces of groups and \(H \)-spaces in algebraic topology
- 57R22 Topology of vector bundles and fiber bundles
- 58D05 Groups of diffeomorphisms and homeomorphisms as manifolds

Keywords:
space of Riemannian metrics; genus; homotopy group; spin-manifold

Full Text: DOI arXiv