Let M be a (connected, oriented, smooth, but not necessarily closed) manifold of dimension $d \geq 2$. Consider a fixed embedding of $m \geq 1$ disjoint closed d-dimensional discs, denoted $\bigsqcup m D^d$, into M. Moreover, fix a finite set $x \subset \partial M \setminus \bigsqcup m D^d$ of cardinality k. Let $\text{Diff}^{+,k}_m(M)$ denote the group of orientation-preserving diffeomorphisms of M that are

1. the identity in a neighborhood of the boundary ∂M,
2. permute the components of $\bigsqcup m D^d$ in a standard way, i.e., a fixed parametrization of each of the discs is preserved, and
3. fix the set x set-wise (but not necessarily point-wise).

Then any such diffeomorphism permutes the points and discs, and gives an underlying diffeomorphism of M by the forgetful map. This yields a homomorphism of topological groups

$$\text{Diff}^{+,k}_m(M) \to \text{Diff}^+(M) \times \Sigma_m \times (\Sigma_k \wr \text{GL}^+_d(\mathbb{R})),$$

where $\text{Diff}^+(M)$ denotes the topological group of orientation-preserving diffeomorphisms of M that are the identity near the boundary, and Σ_n means the symmetric group on n letters. (The map to the wreath product $\Sigma_k \wr \text{GL}^+_d(\mathbb{R})$ also considers the differentials of the diffeomorphisms at the points in x.)

C.-F. Bödigheimer and U. Tillmann showed [Prog. Math. 196, 47–57 (2001; Zbl 0992.57014)] that this map induces a homology isomorphism on classifying spaces in case $d = 2$, i.e., M is a surface, in a range of degrees growing with the genus of M.

The main purpose of this paper is to extend this result to simply-connected manifolds of higher even dimensions and also allow for other tangential structures than orientation. The central ingredient in the proof is the higher-dimensional analogue of the Madsen-Weiss theorem established by S. Galatius and O. Randal-Williams [in: Handbook of homotopy theory. Boca Raton, FL: CRC Press. 443–485 (2020; Zbl 1476.57058)].

A corollary is the computation of the stable cohomology of $\text{Diff}^{+,k}_m(W_{g,1})$, where $W_{g,1} = (\#^g S^n \times S^n) \setminus D^{2n}$ for $2n \geq 6$. This manifold can be seen as the $2n$-dimensional analogue of a surface of genus g with one boundary component.

Reviewer: Jens Reinhold (Münster)

MSC:
- 55R40 Homology of classifying spaces and characteristic classes in algebraic topology
- 55N99 Homology and cohomology theories in algebraic topology
- 55R10 Fiber bundles in algebraic topology
- 57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)

Keywords:
- diffeomorphism groups; moduli spaces of manifolds; homological stability; classifying spaces; cohomology of groups

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.