On the optimality of pseudo-polynomial algorithms for integer programming.

Summary: In the classic Integer Programming Feasibility (IPF) problem, the objective is to decide whether, for a given $m \times n$ matrix A and an m-vector $b = (b_1, \ldots, b_m)$, there is a non-negative integer n-vector x such that $Ax = b$. Solving (IPF) is an important step in numerous algorithms and it is important to obtain an understanding of the precise complexity of this problem as a function of natural parameters of the input.

The classic pseudo-polynomial time algorithm of C. H. Papadimitriou [J. Assoc. Comput. Mach. 28, 765–768 (1981; Zbl 0468.68050)] for instances of (IPF) with a constant number of constraints was only recently improved upon by F. Eisenbrand and R. Weismantel [SODA 2018, 808–816 (2018; Zbl 1410.90128); ACM Trans. Algorithms 16, No. 1, Article No. 5, 14 p. (2020; Zbl 1454.90029)] and K. Jansen and L. Rohwedder [LIPIcs – Leibniz Int. Proc. Inform. 124, Article 43, 17 p. (2019; Zbl 1502.68138)]. Jansen and Rohwedder designed an algorithm for (IPF) with running time $O(m\Delta) m \log(\Delta) \log(\Delta + \|b\|_\infty) + O(mn)$. Here, Δ is an upper bound on the absolute values of the entries of A. We continue this line of work and show that under the Exponential Time Hypothesis (ETH), the algorithm of Jansen and Rohwedder is nearly optimal, by proving a lower bound of $n^{o(\frac{m}{\log m})} \cdot \|b\|^{o(m)}$. We also prove that assuming ETH, (IPF) cannot be solved in time $f(m) \cdot (n \cdot \|b\|_\infty)^{o(\frac{m}{\log m})}$ for any computable function f. This motivates us to pick up the line of research initiated by W. H. Cunningham and J. Geelen [Lect. Notes Comput. Sci. 4513, 158–166 (2007; Zbl 1136.90403)] who studied the complexity of solving (IPF) with non-negative matrices in which the number of constraints may be unbounded, but the branch-width of the column-matroid corresponding to the constraint matrix is a constant. We prove a lower bound on the complexity of solving (IPF) for such instances and obtain optimal results with respect to a closely related parameter, path-width. Specifically, we prove matching upper and lower bounds for (IPF) when the path-width of the corresponding column-matroid is a constant.

MSC:
68Q25 Analysis of algorithms and problem complexity
68W40 Analysis of algorithms
90C10 Integer programming

Keywords:
integer programming; pseudo-polynomial algorithms

Full Text: DOI

References: