swMATH ID: 15103
Software Authors: Gameiro, Marcio; Lessard, Jean-Philippe; Pugliese, Alessandro
Description: Computation of smooth manifolds via rigorous multi-parameter continuation in infinite dimensions. In this paper, we introduce a constructive rigorous numerical method to compute smooth manifolds implicitly defined by infinite-dimensional nonlinear operators. We compute a simplicial triangulation of the manifold using a multi-parameter continuation method on a finite-dimensional projection. The triangulation is then used to construct local charts and an atlas of the manifold in the infinite-dimensional domain of the operator. The idea behind the construction of the smooth charts is to use the radii polynomial approach to verify the hypotheses of the uniform contraction principle over a simplex. The construction of the manifold is globalized by proving smoothness along the edge of adjacent simplices. We apply the method to compute portions of a two-dimensional manifold of equilibria of the Cahn-Hilliard equation.
Homepage: http://archimede.mat.ulaval.ca/jplessard/galepu/
Dependencies: Matlab; intlab
Keywords: continuation; simplicial approximation; triangulation; contraction mapping; rigorous numerics
Related Software: INTLAB; MATCONT; Matlab; AUTO; CL_MATCONT; GitHub; RODES; Taylor; CkAnalytic; COCO; XPPAUT; DISODE45; SlideCont; DifferentialEquations.jl; NeuralPDE.jl; Julia; DPCM; HomCont; CAPD; PyDSTool
Cited in: 15 Publications

Citations by Year