swMATH ID: 18355
Software Authors: K. Oßwald, A. Siegmund, P. Birken, V. Hannemann, A. Meister
Description: L2Roe: A low dissipation version of Roe’s approximate Riemann solver for low Mach numbers. A modification of the Roe scheme called L2Roe for low dissipation low Mach Roe is presented. It reduces the dissipation of kinetic energy at the highest resolved wave numbers in a low Mach number test case of decaying isotropic turbulence. This is achieved by scaling the jumps in all discrete velocity components within the numerical flux function. An asymptotic analysis is used to show the correct pressure scaling at low Mach numbers and to identify the reduced numerical dissipation in that regime. Furthermore, the analysis allows a comparison with two other schemes that employ different scaling of discrete velocity jumps, namely, LMRoe and a method of Thornber et al. To this end, we present for the first time an asymptotic analysis of the last method. Numerical tests on cases ranging from low Mach number (M∞=0.001) to hypersonic (M∞=5) viscous flows are used to illustrate the differences between the methods and to show the correct behavior of L2Roe. No conflict is observed between the reduced numerical dissipation and the accuracy or stability of the scheme in any of the investigated test cases.
Homepage: http://onlinelibrary.wiley.com/doi/10.1002/fld.4175/abstract
Related Software: AUSM; HE-E1GODF; HLLE; FLICA-OVAP; PyFR; AUSMPW+; Spalart-Allmaras; GitHub; CDMATH; ROWMAP; SUNDIALS
Referenced in: 15 Publications

Referencing Publications by Year