epsilon swMATH ID: 22364 Software Authors: Mario Prausa Description: epsilon: A tool to find a canonical basis of master integrals. In 2013, Henn proposed a special basis for a certain class of master integrals, which are expressible in terms of iterated integrals. In this basis, the master integrals obey a differential equation, where the right hand side is proportional to ϵ in d=4−2ϵ space-time dimensions. An algorithmic approach to find such a basis was found by Lee. We present the tool epsilon, an efficient implementation of Lee’s algorithm based on the Fermat computer algebra system as computational backend. Homepage: https://arxiv.org/abs/1701.00725 Keywords: arXiv_publication; arXiv_hep-ph; High Energy Physics - Phenomenology; Feynman integral; canonical basis; differential equation; Fuchsian form Related Software: Fuchsia; LiteRed; Reduze; Azurite; FIRE; FIRE5; GiNaC; FORM; Fermat; Kira; pySecDec; MultivariateResidues; CutTools; HPL; FiniteFlow; RationalizeRoots; HyperInt; sunem; FeynCalc; FeynArts Cited in: 20 Publications all top 5 Cited by 37 Authors 3 Zeng, Mao 3 Zhang, Yang 2 Abreu, Samuel 2 Chen, Jiaqi 2 Henn, Johannes M. 2 Jiang, Xuhang 2 Lee, Roman N. 2 Page, Ben 2 Smirnov, Aleksandr Vladimirovich 2 Smirnov, Vladimir A. 2 Xu, Xiaofeng 2 Yang, Li Lin 1 Bosma, Jorrit 1 Di Vecchia, Paolo 1 Dlapa, Christoph 1 Frellesvig, Hjalte 1 Gituliar, Oleksandr 1 Heinrich, Gudrun 1 Heissenberg, Carlo 1 Hidding, Martijn 1 Ita, Harald 1 Li, Xiaodi 1 Ma, Chichuan 1 Magerya, Vitaly 1 Moriello, Francesco 1 Parra-Martinez, Julio 1 Peraro, Tiziano 1 Pikelner, Andrey F. 1 Prausa, Mario 1 Ruf, Michael S. 1 Russo, Rodolfo 1 Søgaard, Mads 1 Torres Bobadilla, William J. 1 Tschernow, Wladimir 1 Veneziano, Gabriele 1 Weinzierl, Stefan 1 Xu, Yingxuan Cited in 5 Serials 15 Journal of High Energy Physics 2 Computer Physics Communications 1 Physics Letters. B 1 Physics Reports 1 Unitext for Physics Cited in 5 Fields 19 Quantum theory (81-XX) 2 Relativity and gravitational theory (83-XX) 1 Special functions (33-XX) 1 Partial differential equations (35-XX) 1 Astronomy and astrophysics (85-XX) Citations by Year