×

PHOENIX

swMATH ID: 2606
Software Authors: Blokland, J.W.S.; van der Holst, B.; Keppens, R.; Goedbloed, J.P.
Description: PHOENIX: MHD spectral code for rotating laboratory and gravitating astrophysical plasmas. The new PHOENIX code is discussed together with a sample of many new results that are obtained concerning magnetohydrodynamic (MHD) spectra of axisymmetric plasmas where flow and gravity are consistently taken into account. PHOENIX, developed from the CASTOR code [W. Kerner, J.P. Goedbloed, G.T.A. Huysmans, S. Poedts, E. Schwarz, J. Comput. Phys. 142 (1998) 271], incorporates purely toroidal, or both toroidal and poloidal flow and external gravitational fields to compute the entire ideal or resistive MHD spectrum for general tokamak or accretion disk configurations. These equilibria are computed by means of FINESSE [A.J.C. Beliën, M.A. Botchev, J.P. Goedbloed, B. van der Holst, R. Keppens, J. Comp. Physics 182 (2002) 91], which discriminates between the different elliptic flow regimes that may occur. PHOENIX makes use of a finite element method in combination with a spectral method for the discretization. This leads to a large generalized eigenvalue problem, which is solved by means of Jacobi–Davidson algorithm [G.L.G. Sleijpen, H.A. van der Vorst, SIAM J. Matrix Anal. Appl. 17 (1996) 401]
Homepage: http://www.sciencedirect.com/science/article/pii/S0021999107001702
Keywords: Magnetohydrodynamics; resistive; spectrum; tokamak; accretion disk; stability
Related Software: FINESSE; CASTOR; JOREK; BOUT++; RODAS; XTOR; XTOR-2F; ERATO; PEST1; JDQZ
Cited in: 3 Publications

Citations by Year