×

Karate Club

swMATH ID: 32339
Software Authors: Benedek Rozemberczki, Oliver Kiss, Rik Sarkar
Description: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs. We present Karate Club a Python framework combining more than 30 state-of-the-art graph mining algorithms which can solve unsupervised machine learning tasks. The primary goal of the package is to make community detection, node and whole graph embedding available to a wide audience of machine learning researchers and practitioners. We designed Karate Club with an emphasis on a consistent application interface, scalability, ease of use, sensible out of the box model behaviour, standardized dataset ingestion, and output generation. This paper discusses the design principles behind this framework with practical examples. We show Karate Club’s efficiency with respect to learning performance on a wide range of real world clustering problems, classification tasks and support evidence with regards to its competitive speed.
Homepage: https://arxiv.org/abs/2003.04819
Dependencies: Python
Keywords: Machine Learning; arXiv_cs.LG; Social and Information Networks; arXiv_cs.SI; arXiv_stat.ML; Python; Unsupervised Learning; Graphs
Related Software: Scikit; NetLSD; RolX; node2vec; GraRep; PyGSP; NumPy; FSCNMF; NodeSketch; GL2vec; SINE; SciPy; PyTorch; TensorFlow; graph2vec; Graph-tool; NetworkX; SNAP; Python; word2vec
Cited in: 1 Publication

Standard Articles

1 Publication describing the Software Year
An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs
Benedek Rozemberczki, Oliver Kiss, Rik Sarkar
2020

Citations by Year