ore_algebra swMATH ID: 32569 Software Authors: Kauers, Manuel; Jaroschek, Maximilian; Johansson, Fredrik Description: Ore polynomials in Sage. We present a Sage implementation of Ore algebras. The main features for the most common instances include basic arithmetic and actions; GCRD and LCLM; D-finite closure properties; natural transformations between related algebras; guessing; desingularization; solvers for polynomials, rational functions and (generalized) power series. This paper is a tutorial on how to use the package. Homepage: http://www.kauers.de/software.html Source Code: https://github.com/mkauers/ore_algebra Dependencies: Sage Related Software: SageMath; DLMF; gfun; GeneratingFunctions; HolonomicFunctions; NumGfun; OreTools; dd_functions; Arb; TIDES; ACETAF; GitHub; amgf; MultiSum; SIGMA; FOS; olga.lib; JAS; SINGULAR; Plural Cited in: 13 Publications Standard Articles 1 Publication describing the Software, including 1 Publication in zbMATH Year Ore polynomials in Sage. Zbl 1439.16049Kauers, Manuel; Jaroschek, Maximilian; Johansson, Fredrik 2015 all top 5 Cited by 20 Authors 3 Jiménez-Pastor, Antonio 2 Beaton, Nicholas R. 2 Jaroschek, Maximilian 2 Kauers, Manuel 2 Owczarek, Aleksander L. 2 Pillwein, Veronika 2 Singer, Michael F. 1 Barkatou, Moulay A. 1 Chen, Shaoshi 1 Hoffmann, Johannes 1 Johansson, Fredrik 1 Koutschan, Christoph 1 Levandovskyy, Viktor 1 Melczer, Stephen 1 Mezzarobba, Marc 1 Mishna, Marni 1 Rechnitzer, Andrew Daniel 1 Salvy, Bruno 1 Wong, Elaine 1 Xu, Ruijie all top 5 Cited in 8 Serials 4 Journal of Symbolic Computation 2 Séminaire Lotharingien de Combinatoire 1 Advances in Applied Mathematics 1 Algorithmica 1 The Electronic Journal of Combinatorics 1 Foundations of Computational Mathematics 1 Mathematics in Computer Science 1 Annales Henri Lebesgue all top 5 Cited in 9 Fields 8 Computer science (68-XX) 4 Combinatorics (05-XX) 4 Ordinary differential equations (34-XX) 2 Associative rings and algebras (16-XX) 2 Special functions (33-XX) 2 Difference and functional equations (39-XX) 1 Field theory and polynomials (12-XX) 1 Commutative algebra (13-XX) 1 Numerical analysis (65-XX) Citations by Year