×

PPCI

swMATH ID: 36581
Software Authors: Hofmeyr, David P.; Pavlidis, Nicos G.
Description: R package PPCI: Projection Pursuit for Cluster Identification. Implements recently developed projection pursuit algorithms for finding optimal linear cluster separators. The clustering algorithms use optimal hyperplane separators based on minimum density, Pavlidis et. al (2016) <http://jmlr.org/papers/volume17/15-307/15-307.pdf>; minimum normalised cut, Hofmeyr (2017) <doi:10.1109/TPAMI.2016.2609929>; and maximum variance ratio clusterability, Hofmeyr and Pavlidis (2015) <doi:10.1109/SSCI.2015.116>.
Homepage: https://cran.r-project.org/web/packages/PPCI/index.html
Source Code:  https://github.com/cran/PPCI
Dependencies: R
Keywords: R-journal; Cluster Identification; Projection Pursuit
Related Software: R; ProjectionBasedClustering; kohonen; apcluster; NbClust; UCI-ml; mclust; DatabionicSwarm; clustervalidation; clusfind; cclust; APCluster; subspace; t-SNE; Kernlab; TCLUST; pdfCluster; EMCluster; AS 136; dbscan
Cited in: 1 Document

Standard Articles

1 Publication describing the Software Year
PPCI: an R Package for Cluster Identification using Projection Pursuit Link
Hofmeyr, David P.; Pavlidis, Nicos G.
2019

Cited in 1 Field

1 Statistics (62-XX)

Citations by Year