swMATH ID: 39194
Software Authors: Lee, J. J.; Piersanti, E.; Mardal, K.-A.; Rognes, M. E.
Description: A mixed finite element method for nearly incompressible multiple-network poroelasticity. In this paper, we present and analyze a new mixed finite element formulation of a general family of quasi-static multiple-network poroelasticity (MPET) equations. The MPET equations describe flow and deformation in an elastic porous medium that is permeated by multiple fluid networks of differing characteristics. As such, the MPET equations represent a generalization of Biot’s equations, and numerical discretizations of the MPET equations face similar challenges. Here, we focus on the nearly incompressible case for which standard mixed finite element discretizations of the MPET equations perform poorly. Instead, we propose a new mixed finite element formulation based on introducing an additional total pressure variable. By presenting energy estimates for the continuous solutions and a priori error estimates for a family of compatible semidiscretizations, we show that this formulation is robust for nearly incompressible materials, small storage coefficients, and small or vanishing transfer between networks. These theoretical results are corroborated by numerical experiments. Our primary interest in the MPET equations stems from the use of these equations in modeling interactions between biological fluids and tissues in physiological settings. So, we additionally present physiologically realistic numerical results for blood and interstitial fluid flow interactions.
Homepage: https://zenodo.org/record/1215636#.YN2TLi35wRE
Keywords: multiple-network poroelasticity; mixed finite element; incompressible; cerebral fluid flow
Related Software: FEniCS; hypre; MUMPS; Firedrake; NGSolve; Netgen; PCPATCH; ALEA; deal.ii
Cited in: 17 Publications

Citations by Year