swMATH ID: 4803
Software Authors: Zanni, Luca; Serafini, Thomas; Zanghirati, Gaetano
Description: Parallel software for training large scale support vector machines on multiprocessor systems Parallel software for solving the quadratic program arising in training support vector machines for classification problems is introduced. The software implements an iterative decomposition technique and exploits both the storage and the computing resources available on multiprocessor systems, by distributing the heaviest computational tasks of each decomposition iteration. Based on a wide range of recent theoretical advances, relevant decomposition issues, such as the quadratic subproblem solution, the gradient updating, the working set selection, are systematically described and their careful combination to get an effective parallel tool is discussed. A comparison with state-of-the-art packages on benchmark problems demonstrates the good accuracy and the remarkable time saving achieved by the proposed software. Furthermore, challenging experiments on real-world data sets with millions training samples highlight how the software makes large scale standard nonlinear support vector machines effectively tractable on common multiprocessor systems. This feature is not shown by any of the available codes.
Homepage: http://dm.unife.it/gpdt/
Programming Languages: C++
Keywords: support vector machines; large scale quadratic programs; decomposition techniques; gradient projection methods; parallel computation
Cited in: 48 Publications
all top 5

Cited by 88 Authors

10 Zanni, Luca
5 Sciandrone, Marco
5 Serafini, Thomas
4 Dai, Yu-Hong
4 Ruggiero, Valeria
3 Fletcher, Roger
3 Palagi, Laura
3 Zanella, Riccardo
3 Zanghirati, Gaetano
2 Bonettini, Silvia
2 Crisci, Serena
2 Daković, Miloš
2 di Serafino, Daniela
2 González-Lima, María D.
2 Hager, William W.
2 He, Hongjin
2 Niu, Lingfeng
2 Piccialli, Veronica
2 Shi, Yong
2 Stanković, Ljubiša
2 Toraldo, Gerardo
2 Zhang, Hongchao
1 Allaire, Douglas
1 Amaral, Sergio
1 Andretta, Marina
1 Azmi, Behzad
1 Barlow, Jesse L.
1 Beck, Amir
1 Bennett, Kristin P.
1 Bertero, Mario
1 Birgin, Ernesto G.
1 Borzabadi, Akbar Hashemi
1 Camelo, S. A.
1 Cassioli, Andrea
1 Chan, Tony Fan-Cheong
1 Chen, Tianyi
1 Chen, Xiaojun
1 Curtis, Frank E.
1 De Mol, Christine
1 Di Lorenzo, David
1 Ding, Xiaojian
1 Eitrich, Tatjana
1 Fard, Omid Solaymani
1 Galli, Leonardo
1 Galligari, Alessandro
1 Gao, Li
1 Gondzio, Jacek
1 Günter, Simon
1 Han, Deren
1 Jin, Sheng
1 Kimiaei, Morteza
1 la Cruz, William
1 Lang, Bruno
1 Lei, Ming
1 Li, Zhibao
1 Lin, Chih-Jen
1 Liuzzi, Giampaolo
1 Loris, Ignace
1 Lucidi, Stefano
1 Manno, Andrea
1 Martínez, José Mario
1 Neumaier, Arnold
1 Noguera, Gilberto
1 Nosratipour, Hadi
1 Parrado-Hernández, Emilio
1 Piacentini, Mauro
1 Porta, Federica
1 Quiroz, Adolfo J.
1 Risi, A.
1 Robinson, Daniel P.
1 Sagratella, Simone
1 Sarani, Farhad
1 Schraudolph, Nicol N.
1 Tian, Yingjie
1 Viola, Marco
1 Vishwanathan, S. V. N.
1 Vujović, Stefan
1 Wang, Kai
1 Willcox, Karen E.
1 Woodsend, Kristian
1 Wright, Stephen J.
1 Yan, Xihong
1 Yang, Fan
1 Yuan, Ya-xiang
1 Zhang, Peng
1 Zhao, Xi
1 Zhou, Ruizhi
1 Zhu, Mingqiang

Citations by Year