swMATH ID: 23
Software Authors: Koci\'c, Ljubi\v{s}a M.
Description: A considerable class of fractal sets can be represented by using the attractors of Iterated Function Systems, with affine contractive mappings of a metric space \((\mathbb{R}^{\nu},\text{ d})\). The modeling capabilities of such systems are heavily limited however. For example, it is not easy to predict the location of the attractor nor its global shape. Then, Iterated Systems are not affinely invariant (affine mappings of the elements of the system do not result in affine image of its attractor). In this paper a new setting, the affine invariant Iterated Function System is described in such a way that it removes the mentioned shortcomings and can be used for shape-predictable modeling of fractal based forms. The stress is put on modeling of biological forms and their atributes such as: continuous deformation of the attractor in desired way (like in growing), branching (plants, vascular or alveolar network), gradual changing of fractal dimension from smooth to space-filling fractals. The last is useful for creating images of tissues in different stages of development, symmetry, gradual transformation from one to another form, etc. The fractal images obtained by AIFS are merely to gain resemblance to bio-forms.
Homepage: http://operator.pmf.ni.ac.rs/www/pmf/publikacije/filomat/Dokumenta/15-32.pdf
Keywords: iterated function systems; fractal images
Related Software:
Cited in: 14 Publications

Standard Articles

1 Publication describing the Software, including 1 Publication in zbMATH Year
AIFS-A tool for biomorphic fractal modeling. Zbl 1201.37115
Kocić, Ljubiša M.

Citations by Year